Western Boundary Time Series in the Atlantic Ocean.

Molly Baringer, Christopher Meinen and Silvia Garzoli NOAA/Atlantic Oceanographic and Meteorological Laboratory Miami FL

PROJECT SUMMARY

In the subtropical North Atlantic, the meridional overturning circulation consists primarily of two western boundary components: the northward flowing Gulf Stream and the southward flowing Deep Western Boundary Current. The Gulf Stream is the strong surface intensified flow along the east coast of the United States that brings warms waters of tropical origin along the eastern seaboard of the United States. The Gulf Stream also brings with it carbon, nutrients and tropical fish. It supplies warm waters along the coast that impact a multitude of important climate phenomena including hurricane intensification, winter storm formation and moderate European weather. The Gulf Stream includes the bulk of what we call the 'upper limb' of the meridional overturning circulation in the subtropical Atlantic, in addition to a strong wind-driven flow. As the Gulf Stream flows northward it loses heat to the atmosphere until eventually, in the subpolar North Atlantic, some of it becomes cold enough to sink to the bottom of the ocean. This cold deep water then flows southward along the continental slope of the eastern United States as the Deep Western Boundary Current, which represents the 'lower limb' of the meridional overturning circulation.

Along the east coast of Florida, the Gulf Stream is often referred to as the Florida Current and is fortuitously confined within the limited bathymetric channel between Florida and the Bahamas Islands, thus making a long-term observing system both practical and cost effective. Similarly, the Deep Western Boundary Current is located within several hundred miles to the east of Abaco Island, Grand Bahamas. The convenient geometry of the Bahamas Island chain thus allows an effective choke point for establishing a long term monitoring program of both the upper and lower limbs of the overturning circulation.

This project consists of two components to monitor the western boundary currents in the subtropical Atlantic: Task 1: Realtime Florida Current transport measurements using submarine telephone cable and calibration cruises, Task 2: Deep Western Boundary Current water property measurements dedicated research ship time and quasireal-time transport monitoring using moored instruments.

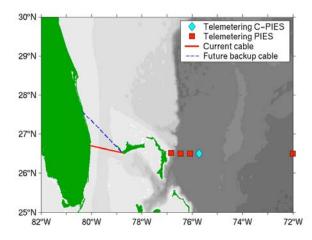


Figure 1: Observational components

Task 1: Continuous Transport measurements of the Florida Current

The project maintains NOAA's well-established and climatically significant Florida Current volume transport time series. Over 22 years of daily mean voltage-derived transports have been obtained for the Florida Current using out-of-service and in-use cables spanning the Straits of Florida. The cable voltages can be converted to physically meaningful transport estimates i.e., intensity of the flow, using electromagnetic induction theory. These transport measurements contain interannual and decadal changes on the order of 10% of the long-term mean transport, and the decadal changes track the North Atlantic Oscillation Index. The strong correlation of Florida Current transport variability with the North Atlantic Oscillation, and by extension with the large-scale sea-surface temperature patterns associated with the North Atlantic Oscillation, suggests connections to tropical Atlantic variability on climatically significant time scales. These strong correlations also link the Florida Current transport with the numerous significant weather and climate phenomena that are related through large-scale ocean-atmosphere patterns in the Atlantic, including decadal and inter-decadal variations in fisheries, rainfall, and hurricane activity.

Funding provides for continuous collection of cable voltages (each minute) and automated removal of geomagnetic noise. In addition to the cable measurements, regular calibration cruises are required for this project's success. These measurements are funded through a complementary project that measures the upper ocean thermal structure in the Atlantic through high-density VOS XBT observations. Funding from the high-density XBT program provides for four two-day small charter boat calibration cruises on the R/V F. G. WALTON SMITH each year and eight one-day charters onboard small fishing vessels.

Task 2: Deep Western Boundary Current Time Series

Over the past 20 years a variety of snapshot sections and time series mooring arrays have been placed along the continental slope east of Abaco Island, Grand Bahamas, in order to monitor variability of the transport carried by the Deep Western Boundary Current. The Abaco time series began in August 1984 when the NOAA Subtropical Atlantic Climate Studies Program extended its Straits of Florida program to include measurements of western boundary current transports and water mass properties east of Abaco Island, Grand Bahamas. Since 1984, more than 20 hydrographic sections have been completed east of Abaco, most including direct velocity observations, and salinity and oxygen bottle samples. Many sections have also included measurements of carbon, chloroflourocarbon, and other water mass tracers.

The repeated hydrographic and tracer sampling at Abaco has established a high-resolution, high quality record of water mass properties in the Deep Western Boundary Current at 26°N. Events such as the intense convection period in the Labrador Sea and the renewal of classical Labrador Sea Water in the 1980's are clearly reflected in the cooling and freshening of the Deep Western Boundary Current waters off Abaco with the arrival

of a strong chlorofluorocarbon pulse approximately 10 years later. This data set is unique in that it is not a single time series site but in instead a time series of transport sections, including high quality water property measurements, of which very few are available in the ocean that approach even one decade in length.

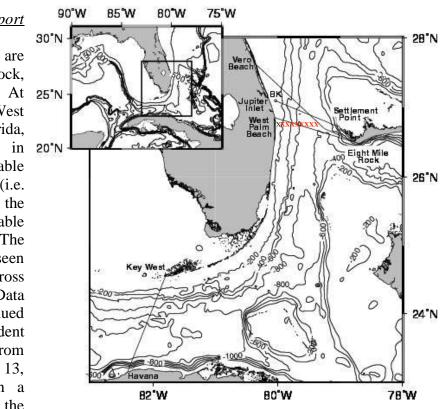
This task includes annual cruises across the DWBC to measure the water mass properties and transports and, in September 2004, a new low-cost monitoring system was put in place to provide continuous long-term monitoring of this flow in quasi-real-time. This new monitoring system includes a moored array of Inverted Echo Sounders (IESs), and each instrument is additionally equipped with a bottom pressure gauge (PIES) and in one case a bottom current meter (C-PIES). The line of IES moorings stretches across the shallow northward flowing Antilles Current as well as the southward flowing Deep Western Boundary Current. The IES monitoring system will also be compared to a series of measurement systems that have been deployed as part of an interagency and international partnership that is testing a variety of low cost methods for observing the complete meridional overturning circulation cell at 26°N in the Atlantic.

Continued time series observations at Abaco are seen as serving three main purposes for climate variability studies:

- Monitoring of the DWBC for water mass and transport signatures related to changes in the strengths and formation regions of high latitude water masses in the North Atlantic for the ultimate purpose of assessing rapid climate change.
- Serving as a western boundary endpoint of a subtropical meridional overturning circulation (MOC)/heat flux monitoring system designed to measure the interior dynamic height difference across the entire Atlantic basin and its associated baroclinic heat transport.
- Monitoring the intensity of the Antilles Current as an index (together with the Florida Current) of interannual variability in the strength of the subtropical gyre.

The Western Boundary Time Series project is one component of the NOAA "Ocean Reference Station" system in the Atlantic Ocean, and it specifically addresses the NOAA climate goals by providing long term integrated measures of the global thermohaline (overturning) circulation. This project is designed to deliver yearly estimates of the state of the thermohaline circulation, i.e. its intensity, properties, and heat transport. Heat and carbon generally are released to the atmosphere in regions of the ocean far distant from where they enter. Monitoring the transport within the ocean is a central element of documenting the overturning circulation of fresh water, heat and carbon uptake and release. Long-term monitoring of key choke points, such as the boundary currents along the continents including the Gulf Stream and the Deep Western Boundary Current, will provide a measurement of the primary routes of ocean heat, carbon, and fresh water transport and hence include the bulk of the Meridional Overturning Circulation.

Project web sites:


http://www.aoml.noaa.gov/phod/floridacurrent/http://www.aoml.noaa.gov/phod/wbcts/

FY 2006 PROGRESS

<u>Task 1: Continuous transport</u> of the Florida Current

Recording instruments located at Eight Mile Rock, Grand Bahamas Island. Eight Mile Rock and in West Palm Beach. Florida. electrode equipment is place, securing stable reference voltage (i.e. grounds) at either end of the submerged telephone cable owned by AT&T. The monitored cable can be seen in Figure 2, stretching across the Florida Straits. Data acquisition has continued without significant incident excepting the period from May 7, 2006 through July 13, 2006 when a failure in a subterranean wire between the recording system and the anode

(Earth ground) began to fail. While this event resulted in the delayed release of about two

Figure 2: Location of submarine telephone cables (solid black) and nine stations (red) occupied during calibration cruises.

months of data, it is expected that all of this data will be recoverable and should appear online early in FY07. This FY has seen the continued success of the stable system of processing and quality control for both the calibration section data and the cable transport data implemented in FY05. Cable voltages are recorded every minute, and are post processed to form daily transport estimate. The Table 1 below shows the number of hourly averaged voltage measurements.

FY 2006	FY 2005	FY 2004	FY 2003	FY 2002
98% Return ¹	88% Return ²	87% Return ¹	89% Return	72% Return ³

Table 1: Data return from continuous cable voltages (% Return based on the maximum number of days possible in one year: e.g. 365 for non-leap years and 366 for leap years like 2004).

¹ Presuming May 7 – July 13 time period is successfully recovered, which is likely.

-

² Note a pair of hurricanes destroyed the recording equipment and damaged the infrastructure in Sept. 2004.

³ Note old recording system failed in FY 2002.

Planned Cruise	FY 2006	FY 2005	FY 2004	FY 2003	FY 2002
1	11-Nov- 2005	19-Nov-2004 dropsonde lost	9-Dec-2003	clearance problems	weather problems
2	17-Nov- 2005	29-Nov-2004	16-Dec-2003	clearance problems	Dec 14, 2001
3	2-Feb-2006	17-Feb-2005	9-Jan-2004	equipment problems	Mar 12, 2002
4	14-Mar- 2006	24-Feb-2005 section incomplete due to weather	13-Jan-2004 – GPS failure on two stations	18-Mar-03	Mar 18, 2002
5	27-Mar- 2006	18-May-2005	7-May-2004	June 7, 2003 – dropsonde failure	June 3, 2002
6	22-Jun-2006	21-Jun-2005 dropsonde lost	24-May-2004	no dropsonde	June 6, 2002
7	30-Jun-2006	31-Aug-2005	Jun 7, 2004	no dropsonde	Aug 23, 2002 – dropsonde lost
8	20-Jul-2006		Jun 11, 2004	no dropsonde	
9	15-Sep-2006		Aug 24, 2004		
10			1-Sep-2004 - GPS antenna failure		
	100%	50%	80%	13%	63%
Table 2. (successful	successful ⁴	successful ⁵	successful ⁶	successful

Table 2: Cruise dates for 1-day small boat calibration cruises using dropsonde instrument.

Small charter boat calibration trips

A total of nine 1-day surveys were conducted using a dropsonde profiler (the first cruise had been postponed from the last FY due to weather). Measurements are taken at nine stations along 27°N and include vertically averaged horizontal velocity, surface velocity and expendable temperature probes (XBTs). The cruise dates are shown in Table 2.

⁴ Final cruise postponed to next fiscal year due to weather/scheduling issues. Two dropsonde instruments were lost due to equipment malfunctions. One cruise was only partially completed due to weather.

⁵ Two additional cruises were planned for FY04 due to dropsonde failures in FY03.

⁶ Sections missing due to: dropsonde failure (4) and clearance problems (2).

Full Water Column calibration cruises:

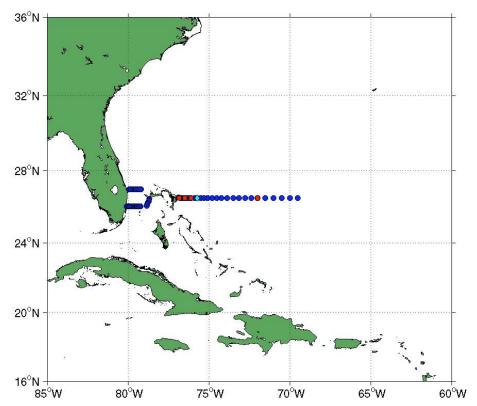
Two-day cruises on RV Walton Smith are generally scheduled four times per year (the final cruise of FY05 was postponed into early FY06). All cruises include nine stations with full water column CTD, lowered ADCP, and continuous shipboard ADCP. The station locations are shown in Figure 2. Table 3 below includes the cruise dates and number of water samples taken for oxygen concentration (O2) and salinity (S).

FY2006		FY 2005		FY 2004		FY 2003	
Date	Water	Date	Water	Date	Water	Date	Water
	Samples		Samples		Samples		Samples
Nov 20-23,	60 O2,	Dec 3-4,	58 O2,	Jan 8-9,	55 O2,	Nov 20,	43 O2,
2005	48 S	2004	44 S	2003	46 S	2002	44 S
Dec 14-16,	60 O2,	Jun 3-4,	58 O2,	May 6-	47 O2,	Mar 22,	59 O2,
2005	48 S	2005	45 S	7, 2004	43 S	2003	49 S
Jan 29-31,	60 O2,	Jul 11-12,	58 O2,	Jul 4-5,	56 O2,	Jul 16,	56 O2,
2006	48 S	2005	45 S	2004	46 S	2003	46 S
Jun 25-27,	60 O2,			Aug 27-	55 O2,	Oct 2-3,	57 O2,
2006	48 S			28, 2004	42 S	2003	43 S
Sep 18-19,	68 O2,						
2006	48 S						
125% of	Planned	67% of	Planned	100% of	f Planned	100% of	Planned
Cruises ⁷		Cruises ⁸		Cruises		Cruises	

Table 3: Cruise dates for 2-day calibration cruises on the R/V Walton Smith.

Task 2: Deep Western Boundary Current time series

Two full water column cruises of CTD, lowered ADCP, and shipboard ADCP were conducted during FY06 within the Florida Straits and east of Abaco Island, Bahamas, one on the NOAA Ship Ronald H. Brown and the other on the R/V Seward Johnson. At each station, a package consisting of a Seabird Electronics Model 9/11+ CTD O₂ system, an RDI 150 kHz Workhorse Lowered Acoustic Doppler Current Profiler, a RDI 300 kHz Workhorse Lowered Acoustic Doppler Current Profiler, and 23 10-liter Niskin bottles, was lowered to the bottom. This provided profiles of velocity, pressure, salinity (conductivity), temperature, and dissolved oxygen concentration. Water samples were collected at various depths and analyzed for salinity and oxygen concentration to aid with CTD calibration.


The first hydrographic cruise this year took place on the NOAA Ship Ronald H. Brown during Mar 9-28, while the second took place on the R/V Seward Johnson during Sept 25-Oct 12. The stations were occupied at the locations shown in Figure 3. Table 4 lists the cruise dates and bottle samples taken compared to previous years. Five inverted echo sounders (IES) sites were maintained as shown in Figure 3 including: four IES with pressure sensors (PIES) and one IES with pressure sensor and bottom current meter (C-PIES). Four additional temporary IES/PIES sites were deployed during the September 2006 cruise between the permanent sites to test array resolution.

⁸ The last cruise was postponed to next FY due to weather/equipment/scheduling problems.

⁷ First cruise had been postponed from the previous FY.

FY	Date	Stations	Bottle Samples	Comments
2006	Sep, 2006	42	465 O2, 568 S	2 IES recovered, 1 IES lost (but data
				retrieved via telemetry), 7 IES
				deployed, and data retrieved via
				telemetry from 2 IES
2006	Mar, 2006	72	921 O2, 943 S,	2 IES recovered, 2 IES deployed,
			391 nut., 506	data from 3 IES recovered via
			DOC/TOC, 80	acoustic telemetry
			DIC, 40 TALK	
2005	Sep, 2005	53	728 O2, 728 S	1 IES deployed, 2 IESs recovered,
				data from 3 IESs recovered via
				acoustic telemetry
2005	May, 2005	70	1084 O2, 1180 S	1 IES deployed, data recovered from
				3 IESs via acoustic telemetry
2004	Sep, 2004	42	634 O2, 629 S	5 IES mooring deployments
2003	Feb, 2003	54	844 O2, 843 S	3 IES Mooring recoveries, Short
				Seabeam in Florida Straits
2002	June 2002	57	924 O2, 924 S	Extended Seabeam survey east of
				Abaco Island, SF6 samples.
2001	April 2001	33	607 O2, 659 S	4 IES mooring deployments

Table 4: Cruise dates and water samples taken for Large Vessel full water column surveys of the Deep Western Boundary Current. September 2006 cruise aboard the R/V Seward Johnson and May 2005 cruise aboard the R/V Knorr with ship time funded by NSF. April 2001 cruise on the R/V Oceanus. All other cruises were conducted on the R/V Ronald H. Brown. Additional nutrient and carbon measurements that were taken during the March 2006 cruise were collected using base funds. Funding for collection in future years is being requested as an Add Task.

Figure 3: Approximate locations of full water column hydrographic stations sampled on the two cruises in FY 2005. Blue circles denote CTD sites. Red squares denote PIES moorings and the cyan diamond denotes a C-PIES mooring. Note Northwest Providence Channel stations and 26°N Florida Straits sections were not completed during September 2006 cruise due to time constraints.

Research highlights

- 1. Numerous climate models have shown that variations in the Meridional Overturning Cell could have significant climate impacts over a wide range of locations around the globe. We compared the use of bottom pressure gauges and inverted echo sounders to a more traditional picket fence of current meters and showed that the far less expensive option of using bottom pressure and inverted echo sounders was able to reproduce the transport fluctuations observed by the current meter arrays well. This has led to a more efficient, lower cost monitoring system (now funded through the NOAA Office of Climate Observations) for the lower limb of the meridional overturning circulation.
- 2. A recent publication utilizing the PIES/C-PIES mooring data has shown that there is no sign of a significant trend in the components of the meridional overturning cell near the western boundary over the past twenty years. Furthermore these results demonstrate that the baroclinic and barotropic components of the transport variability are partially compensating one another, indicating that monitoring of

MOC transport variations via hydrographic sections is more inherently problematic than had previously been known.

Peer Reviewed Publications:

- 1. Meinen, C. S., M. O. Baringer, and S. L. Garzoli. "Variability in Deep Western Boundary Current transports: Preliminary results from 26.5°N in the Atlantic". Geophysical Research Letters, 33, L17610, doi:10.1029/2006GL026965, 2006.
- 2. Baringer, M. O. and C. S. Meinen, "Thermohaline Circulation", in "State of the Climate in 2005", K. A. Shein, ed., Bulletin of the American Meteorological Society, 87(6), s1-s102, doi: 10.1175/BAMS-87-6-shein, 2006.
- 3. Shoosmith, D. R., M. O. Baringer and W. E. Johns, 2005. A continuous record of Florida Current heat transport at 27°N, *Geophys. Res. Letters.*, 32, L23603, doi:10.1029/2005GL024075.

Abstracts/Meeting Proceedings:

- 1. Baringer, M. O., Heat transport variations in the subtropical North Atlantic. Rapid Climate Change International Conference, October 24-27, 2006, Birmingham, United Kingdom.
- 2. Meinen, C. S., M. O. Baringer, and S. L. Garzoli, Variability of the Western Boundary Currents in the subtropical North Atlantic. Rapid Climate Change International Conference, October 24-27, 2006, Birmingham, United Kingdom.
- 3. Longworth H. R., H. L. Bryden, M. O. Baringer: Variability in the Atlantic Meridional Overturning Circulation at 25°N from 1980 to 2005. Rapid Climate Change International Conference, October 24-27, 2006, Birmingham, United Kingdom.
- 4. Cunningham, H. Bryden, J. Hirschi, D. Rayner, J. Marotzke, W. Johns, M. Baringer, C. Meinen: Vertical compensation of mass transports associated with the meridional overturning circulation in the Subtropical North Atlantic.
- 5. Bryden Harry L., Torsten O. Kanzow, Hannah R. Longworth, Stuart A. Cunningham, Molly O. Baringer, Lisa M. Beal, Joel J.- M Hirschi, William E. Johns, Christopher S. Meinen, Jochem Marotzke, Darren Rayner: Variability in the Atlantic meridional overturning circulation at 25°N.
- 6. Rayner D., S. Cunningham, H Bryden, T. Kanzow, J. Hirschi, J. Marotzke, W. Johns, M. Baringer, C. Meinen, L. Beal: Evolution and maintenance of the transatlantic mooring array at 26.5°N.
- 7. Meinen, C. S., M. O. Baringer, and S. L. Garzoli, Variability in transports along the subtropical Atlantic western boundary: Implications for monitoring the MOC, EGU General Assembly, April 2-7, 2006, Vienna, Austria.
- 8. Meinen, C. S., M. O. Baringer, and S. L. Garzoli, Transport variability along the subtropical Atlantic western boundary: Implications for monitoring the Meridional Overturning Circulation, Office of Climate Observations Review Workshop, May 10-12, 2006, Silver Spring, Maryland.

Technical/Progress Reports:

1. Baringer, M. O., C. S. Meinen and S. Garzoli, 2006. The Meridional Overturning Circulation and Oceanic Heat Transport, In *Annual Report on the State of the*

- *Ocean and the Ocean Observing System for Climate (FY-2005),* J.M. Levy, D.M. Stanitski, and P. Arkin (eds.). NOAA Office of Climate Observation, Silver Spring, MD, 68-73.
- 2. Baringer, M. O., C. S. Meinen and S. Garzoli, 2006. Western Boundary Time Series in the Atlantic Ocean, In *Annual Report: The State of the Ocean and the Ocean Observing System for Climate*, J.M. Levy, D.M. Stanitski, and P. Arkin (eds.), Office of Climate Observation, Climate Program Office, National Oceanic and Atmospheric Administration, 150-158.